Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 12, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
A photochemical C(sp 3 )–H oxygenation of alkane and arene substrates catalyzed by [NEt 4 ] 2 [Ce IV Cl 6 ] under mild conditions (1 atm, 25 °C) is described. Time-course studies reveal that the hydrocarbons are oxidized in a stepwise fashion to afford alcohols, aldehydes, ketones, and carboxylic acids. The catalyst resting state, [Ce IV Cl 6 ] 2− , is observed by UV-visible spectroscopy. On/off light-switching experiments, quantum yield measurements, and the absence of a kinetic isotope effect on parallel C–H/C–D functionalization suggest that ligand-to-metal charge transfer of [NEt 4 ] 2 [Ce IV Cl 6 ] to generate Cl˙ is the turnover-limiting step. The involvement of a highly reducing excited-state [NEt 4 ] 3 [Ce III Cl 6 ]* species as well as photo-excited aldehyde, under black light irradiation appears to facilitate the conversion of primary alcohols and aldehydes to carboxylic acids. Remarkably, this approach is found to be capable of direct activation of light alkanes, including methane and ethane.more » « less
-
The separation and purification of niobium and tantalum, which co-occur in natural sources, is difficult due to their similar physical and chemical properties. The current industrial method for separating Ta/Nb mixtures uses an energy-intensive process with caustic and toxic conditions. It is of interest to develop alternative, fundamental methodologies for the purification of these technologically important metals that improve upon their environmental impact. Herein, we introduce new Ta/Nb imido compounds: M( t BuN)(TriNOx) (1-M) bound by the TriNOx 3− ligand and demonstrate a fundamental, proof-of-concept Ta/Nb separation based on differences in the imido reactivities. Despite the nearly identical structures of 1-M, density functional theory (DFT)-computed electronic structures of 1-M indicate enhanced basic character of the imido group in 1-Ta as compared to 1-Nb. Accordingly, the rate of CO 2 insertion into the MN imido bond of 1-Ta to form a carbamate complex (2-Ta) was selective compared to the analogous, unobserved reaction with 1-Nb. Differences in solubility between the imido and carbamate complexes allowed for separation of the carbamate complex, and led to an efficient Ta/Nb separation ( S Ta/Nb = 404 ± 150) dependent on the kinetic differences in nucleophilicities between the imido moieties in 1-Ta and 1-Nb.more » « less
An official website of the United States government
